	Parlay (Call Control/Parlay 4)

Member Meeting, Munich, Germany, 12 – 14 Sept 2001
	Doc N5-010910

Source:
NTT*

Title:
Requirements on Service Interaction Management
Agenda Item:
Parlay 4 Requirements
Document for:
Discussion
*Contact:
R. Takeuchi (NTT) Tel +81 422 59 2987, Fax +81 422 37 7441, e-mail takeuchi.ryo@lab.ntt.co.jp

T. Nakatsuru (NTT) Tel +81 422 59 3592, Fax +81 422 37 7441, e-mail nakatsuru.takeshi@lab.ntt.co.jp
1 Introduction

The Parlay API does not have sufficient means of preventing multiple applications from performing instructions mutually contradictory on a call. In this document, an initial requirement and enhancement for avoiding the problem are proposed.

Since the Parlay API intends to be open to a number of business domains, multiple independent vendors may develop applications separately. It will be important to consider some mechanisms arbitrating between applications.

2 Problem

The Parlay API 3.0 and earlier specifications do not have sufficient means of preventing multiple applications from performing instructions contradicting each other on one call instance. Such multiple independent applications that control a call in parallel and can interrupt call processing may cause conflicts, or Service Interactions, between different procedures desired on a call.

Figure 1 illustrates a simple example of possible interactions between two Parlay Applications. The first application requests the network to notify when a dialing number has been analyzed, and the second one requests to notify when the call is busy. After the following routeReq with an instruction ‘report when busy’ results in busy, both applications desire the call to be routed to different destinations.

3 Requirement

Define behavior of the Parlay Gateway when multiple Parlay Applications invoke methods that may interrupt processing of the same call.

Those methods include enableCallNotification and routeReq enabling interception of a controlled call.

4 Proposed Enhancement

Let IpCallControlManager have a service interaction management capability and define behavior when

- Requesting event report (e.g., enableCallNotification, routeReq)

- Notifying event (e.g., callEventNotify, routeRes)

- Requesting processing a call (e.g., routeReq, release)

[image: image1.wmf]IpAppLogic(#1)

IpAppCallContro

lManager(#1)

IpAppCall(#1)

IpAppLogic(#2)

IpAppCallContro

lManager(#2)

IpAppCall(#2)

IpCallControlManager

IpCall

new()

enableCallNotification()

new()

enableCallNotification()

callEventNotify()

'forward event'

new()

routeReq()

callEventNotify()

routeReq()

routeRes()

'forward event'

'forward event'

new()

routeReq()

Address

Analysed

Called Party

Busy

Figure 1. An example of conflicts between two applications.

� EMBED Excel.Sheet.8 ���

-3-
PAGE
	-1-

[image: image2.wmf]IpAppLogic(#1)

IpAppCallContro

lManager(#1)

IpAppCall(#1)

IpAppLogic(#2)

IpAppCallContro

lManager(#2)

IpAppCall(#2)

IpCallControlManager

IpCall

new()

enableCallNotification()

new()

enableCallNotification()

callEventNotify()

'forward event'

new()

routeReq()

callEventNotify()

routeReq()

routeRes()

'forward event'

'forward event'

new()

routeReq()

Address

Analysed

Called Party

Busy

_1061331449.xls
Sheet1

		

				IpAppLogic(#1)		IpAppCallControlManager(#1)		IpAppCall(#1)		IpAppLogic(#2)		IpAppCallControlManager(#2)		IpAppCall(#2)		IpCallControlManager		IpCall

new()

enableCallNotification()

new()

enableCallNotification()

callEventNotify()

'forward event'

new()

routeReq()

callEventNotify()

routeReq()

routeRes()

'forward event'

'forward event'

new()

routeReq()

Address Analysed

Called Party Busy

Sheet2

		

Sheet3

		

