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1 Introduction

The Parlay API does not have sufficient means of preventing multiple applications from performing instructions mutually contradictory on a call.  In this document, an initial requirement and enhancement for avoiding the problem are proposed. 

Since the Parlay API intends to be open to a number of business domains, multiple independent vendors may develop applications separately.  It will be important to consider some mechanisms arbitrating between applications.

2 Problem

The Parlay API 3.0 and earlier specifications do not have sufficient means of preventing multiple applications from performing instructions contradicting each other on one call instance.  Such multiple independent applications that control a call in parallel and can interrupt call processing may cause conflicts, or Service Interactions, between different procedures desired on a call.

Figure 1 illustrates a simple example of possible interactions between two Parlay Applications.  The first application requests the network to notify when a dialing number has been analyzed, and the second one requests to notify when the call is busy.  After the following routeReq with an instruction ‘report when busy’ results in busy, both applications desire the call to be routed to different destinations.

3 Requirement

Define behavior of the Parlay Gateway when multiple Parlay Applications invoke methods that may interrupt processing of the same call.  

Those methods include enableCallNotification and routeReq enabling interception of a controlled call.

4 Proposed Enhancement

Let IpCallControlManager have a service interaction management capability and define behavior when

- Requesting event report (e.g., enableCallNotification, routeReq)

- Notifying event (e.g., callEventNotify, routeRes)

- Requesting processing a call (e.g., routeReq, release)
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Figure 1. An example of conflicts between two applications.
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